Positive solutions to an Nth order right focal boundary value problem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimates of Positive Solutions for Higher Order Right Focal Boundary Value Problem

We consider the (p,n− p) right focal boundary value problem. A new set of upper and lower estimates of positive solutions for the boundary value problem are obtained. These estimates implement and improve the ones in the literature. AMS Subject Classification: 34B18.

متن کامل

Three Positive Solutions to a Discrete Focal Boundary Value Problem

We are concerned with the discrete focal boundary value problem ∆3x(t−k) = f(x(t)), x(a) = ∆x(t2) = ∆2x(b+ 1) = 0. Under various assumptions on f and the integers a, t2, and b we prove the existence of three positive solutions of this boundary value problem. To prove our results we use fixed point theorems concerning cones in a Banach space.

متن کامل

Positive Solutions for Nonlinear nth-Order Singular Nonlocal Boundary Value Problem

We study the existence and multiplicity of positive solutions for a class of nth-order singular nonlocal boundary value problems u(n)(t) + a(t) f (t,u) = 0, t ∈ (0,1), u(0) = 0, u′(0) = 0, . . . ,u(n−2)(0) = 0, αu(η) = u(1), where 0 < η < 1, 0 < αηn−1 < 1. The singularity may appear at t = 0 and/or t = 1. The Krasnosel’skii-Guo theorem on cone expansion and compression is used in this study. Th...

متن کامل

Positive solutions of a nonlinear nth order boundary value problem with nonlocal conditions

We discuss the existence of positive solutions of a nonlinear nth order boundary value problem u(n) + a(t) f (u) = 0, t ∈ (0, 1) u(0) = 0, u′(0) = 0, . . . , u(n−2)(0) = 0, αu(η) = u(1), where 0 < η < 1, 0 < αηn−1 < 1. In particular, we establish the existence of at least one positive solution if f is either superlinear or sublinear by applying the fixed point theorem in cones due to Krasnoselk...

متن کامل

Existence and Nonexistence of Positive Solutions to a Right-focal Boundary Value Problem on Time Scales

where n≥ 2, t1 < t2 < ··· < tn−1 < tn, λ is a real parameter, and x = x(t) is a desired solution. The arguments are similar to those used in [9, 13]. In the third section we obtain multiplicity results for this problem with λ = 1. In the fourth section existence, nonexistence, and multiplicity results are given for the eigenvalue problem. To understand this so-called dynamic equation (1.1) on a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Qualitative Theory of Differential Equations

سال: 2007

ISSN: 1417-3875

DOI: 10.14232/ejqtde.2007.1.4